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CONNECTIONS - MAGIC SQUARES, CUBES AND MATCHINGS

Marián TRENKLER

1. Magic squares and cubes

Magic squares fascinated people throughout centuries. The first references to
magic squares can be found in ancient Chinese and Indian literature. The first, well
known magic squares is called Lo Shu. During the fifteenth century, the Byzan-
tine writer Manuel Moschopoulos introduced magic squares in Europe, where, as
in other cultures, magic squares were linked with divination, alchemy, and as-
trology. The first evidence of a magic square appearing in print in Europe was
revealed in a famous engraving by the German artist Albrecht Dürer. In 1514,
Dürer incorporated a magic square into his copperplate engraving Melancholy in
the upper-right corner (see [3, p.147].) A construction of a magic square of order 3
is introduced in the tragedy Faust by J.W.Göthe. During the seventeenth century,
serious consideration was given to the study of magic squares. In 1687-88, a French
aristocrat, Antoine de la Loubère, studied the mathematical theory of constructing
magic squares. In 1686, Adamas Kochansky extended magic squares to three di-
mensions. Probably, the first mentioned magic cube appeared in a letter of Pierre
de Fermat from 1640 (see [3, p.314].) During the latter part of the nineteenth cen-
tury, mathematicians applied the squares to problems in probability and analysis.
Today, magic squares are studied in relation to factor analysis, combinatorial math-
ematics, matrices, modular arithmetic, and geometry. There is a lot of information
about magic squares and cubes in cited literature and on many web-pages. (See
http://www.pse.tohoku.ac.jp/˜msuzuki/MagicSquare.html.)

Figure 1

A magic cube of order n is a cubical array

Mn = |mn(i, j, k); 1 ≤ i, j, k ≤ n|,

containing natural numbers 1, 2, . . . , n3 such that the sums of the numbers along
each row (n-tuple of elements having the same coordinates on two places) and also

along each of its four great diagonals are the same, e.i. n(n3+1)
2 .

Figure 1 shows the magic cube M3 which was constructed using the formula (1).
The element m3(1, 1, 1) = 8 is in three rows containing the triples {8, 15, 19},
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{8, 24, 10}, {8, 12, 22}. On the four diagonals there are the triples {8, 14, 20},
{19, 14, 9}, {10, 14, 18} and {6, 14, 22}.

This paper gives the algorithm for making a magic cube of order n 6= 2. The
proof of the correctness of our formulas follows from [17] and [20]. We use the
following denotation:

x (mod n) is a remainder from division of x by n,

x = n + 1 − x,

x∗ = min{x, x},

x̃ =

{
0 for 1 ≤ x ≤ n

2

1 for n
2 < x ≤ n.

We construct a magic cube Mn = |mn(i, j, k)| of order n using the following
three formulas:

1. If n ≡ 1 (mod 2) then

mn(i, j, k) = [(i − j + k − 1) (mod n)] n2 + [(i − j − k) (mod n)] n

+ (i + j + k − 2) (mod n) + 1 (1)

2. If n ≡ 0 (mod 4) then

mn(i, j, k) =

{
(i − 1) n2 + (j − 1) n + k if F(i, j, k) = 1

(i − 1) n2 + (j − 1) n + k if F(i, j, k) = 0

where

F(i, j, k) = (i + j + k + ĩ + j̃ + k̃) (mod 2)

3. If n ≡ 2 (mod 4) (in this case n
2 is odd) then

mn(i, j, k) = d(u, v)n3

8 + mn
2
(i∗, j∗, k∗)

where

u = (i∗ − j∗ + k∗) (mod n
2 ) + 1,

v = 4̃i + 2j̃ + k̃ + 1,

d(u, v) for 1 ≤ u ≤ n
2 , 1 ≤ v ≤ 8 is defined by the table (x = 1, 2, . . . , n−6

4 )

d(u, 1) d(u, 2) d(u, 3) d(u, 4) d(u, 5) d(u, 6) d(u, 7) d(u, 8)

d(1, v) 7 3 6 2 5 1 4 0
d(2, v) 3 7 2 6 1 5 0 4
d(3, v) 0 1 3 2 5 4 6 7

d(2x + 2, v) 0 1 2 3 4 5 6 7
d(2x + 3, v) 7 6 5 4 3 2 1 0
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A generalization of a magic square is a magic p-dimensional cube.
A magic p-dimensional cube of order n is a p-dimensional matrix

Mp
n = |m(i1, i2, . . . , ip); 1 ≤ i1, i2, . . . , ip ≤ n|,

containing natural numbers 1, 2, . . . , np such that the sum of the numbers along

every row and every diagonal is the same, i.e. n(np+1)
2 . (Note. A magic 1-dimen-

sional cube M1
n of order n is given by an arbitrary permutation of natural numbers

1, 2, . . . , n and for p = 2, of a magic p-dimensional cube Mp
n is a magic square.)

By a row of Mp
n we mean an n-tuple of elements m(i1, i2, . . . , ip) which have

identical coordinates at p − 1 places. A magic p-dimensional cube Mp
n contains

pnp−1 rows. A diagonal of Mp
n is an n-tuple of elements {m(x, i2, i3, . . . , ip), x =

1, 2, . . . , n, where ij = x or ij = x for all 2 ≤ j ≤ p}. Every p-dimensional cube
has exactly 2p−1 great diagonals.

In Figure 2 are depicted the nine layers of M4
3. The element m(1, 1, 1, 1) = 46 is

in four rows containing the triplets of numbers {46, 8, 69}, {46, 62, 15}, {46, 17, 60}
and {46, 59, 18}. In the eight diagonals there are the triplets {m(1, 1, 1, 1) =
46, 41, 36}, {m(1, 1, 1, 3) = 69, 41, 13}, {m(1, 1, 3, 1) = 15, 41, 67}, {m(1, 1, 3, 3) =
35, 41, 47},
{m(1, 3, 1, 1) = 60, 41, 22}, {m(1, 3, 1, 3) = 26, 41, 56}, {m(1, 3, 3, 1) = 53, 41, 29}
and
{m(1, 3, 3, 3) = 64, 41, 18}. This magic 4-dimensional cube was constructed using
the following formula (see [19]).

m(i1, i2, i3, i4) = [(i1 − i2 + i3 − i4 + n+1
2 − 1) (mod n)]n3

+ [(i1 − i2 + i3 + i4 −
n+1

2 − 1) (mod n)]n2

+ [(i1 − i2 − i3 − i4 + 3n+1
2 − 1) (mod n)]n

+ [(i1 + i2 + i3 + i4 − 3n+1
2 − 1) (mod n)] + 1.

46 8 69 17 78 28 60 37 26
62 42 19 51 1 71 10 80 33
15 73 35 55 44 24 53 6 64

59 39 25 48 7 68 16 77 30
12 79 32 61 41 21 50 3 70
52 5 66 14 75 34 57 43 23

18 76 29 58 38 27 47 9 67
49 2 72 11 81 31 63 40 20
56 45 22 54 4 65 13 74 36

Figure 2 - Magic 4-dimensional cube M4
3

In [19] and [20] we are concerned with the construction of a magic p-dimensional
cube. There is proved the first definitive result for magic hypercubes.

Theorem. (Trenkler)
A magic p-dimensional cube Mp

n of order n exists if and only if n 6= 2 and p > 1
or all n and p = 1.
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Various properties of magic squares have been studied, but there are many open
problems (see [1]). The similar problems can be formulated and solved for magic
p-dimensional cubes.

2. Magic graphs

We shall consider a non-oriented finite graph G = [V (G), E(G)] without loops,
multiple edges or isolated vertices. If there exists a mapping f from the set of edges
E(G) into positive real numbers such that

(i) f(ei) 6= f(ej) for all ei 6= ej ; ei, ej ∈ E(G),

(ii)
∑

e∈E(G) η(v, e)f(e) = r for all v ∈ V (G),

where η(v, e) =

{
1 when vertex v and the edge e are incident and

0 in the opposite case,

then the graph G is called magic. The mapping f is called a labelling of G and
the value r is the index of the label f . We say that a magic graph G is supermagic
if there exists a mapping f into the set 1, 2, 3, . . . , |E|.

To study magic graphs was suggested by Czech mathematician Jiř́ı Sedláček. He
noticed the correspondence between a magic square of order n and a magic complete
bipartite graph Kn,n. Several sufficient conditions for the existence of magic graphs
are established by many authors (e.g. M.Bača, M.Doob, H.Enomoto, N.Hartsfield,
J.Ivančo, R.H.Jeurissen, J.Mülbacher, K-W.Lih, S-M.Lee, G.Ringer, J.Sedláček,
B.M.Stewart, M.Trenkler, V.Vetchý.) There were published many papers about
magic graphs (see [2] and [9].) Some authors used the term magic graphs in another
meaning. Two following different characterizations of magic graphs were published
in [11] and [12].

First we shall formulate several necessary definitions. We say that a graph G is
of type A if it has two edges e, f such that G− e− f is a balanced bipartite graph
with the partition V1, V2, and the edge e joins two vertices of V1 and f joins two
vertices of V2. A graph G is of type B if it has two edges e1, e2 such that G−e1−e2

is a graph with two components G1 and G2 such that G1 is a balanced bipartite
graph with partition V1, V2 and G2 is a non-bipartite graph, and ei joins a vertex
of Vi with a vertex of V (G2). As usual, Γ(S) denotes the set of vertices adjacent
to a vertex in the set S.

Theorem. (Jeurissen)
A non-bipartite graph G is magic if and only if G is neither of type A nor of

type B, and |Γ(S)| > |S| for every independent subset S 6= ∅ of V (G).

A spanning subgraph F of the graph G is called a (1-2)-factor of G if each of
its components is an isolated edge or a circuit. We say that a (1-2)-factor separates
the edges e and f if at least one of them belongs to F and neither the edge part
nor the circuit part contains both of them. In [11] the following theorem is proved.
(Note. Later, the same characterization of magic graphs appeared in [7].)

Theorem. (Jezný, Trenkler)
A graph G is magic if and only if every edge belongs to a (1-2)-factor, and every

pair of edges e, f is separated by a (1-2)-factor.

From this theorem it follows, then, that a graph is magic with real labels if and
only if it is magic with integer labels.
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If e and f is an arbitrary couple of edges of a bipartite magic graph G then it
has a 1-factor which contains e and does not contain f . Evidently, every bipartite
magic graph is an elementary graph (see [13,p.122]), which has a 1-factor for its
arbitrary edge.

We give several results on magic and super-magic graphs.

Theorem. (Trenkler [18])
A connected magic graph with n vertices and q edges exists if and only if n = 2

and q = 1 or n ≥ 5 and 5n
4 < q ≤ n(n−1)

2 .

By an I-graph we mean a graph G with a 1-factor F whose every edge is incident
with an end -vertex (a vertex of degree 1) of G. The symbol P5 denotes a path of
length 5.

Theorem. (M.Trenkler, V.Vetchý [22])
Let a graph G have order n ≥ 5. The graph G2 is magic if and only if G is

not an I-graph and it is different from the path P5. The graph Gi is magic for all
i ≥ 3.

From this theorem it follows two unpublished theorems proved by M.Sekanina.

Theorem.

If G is a graph of even-order then G2 has 1-factor

Theorem.

If G is a graph of odd-order and v is an arbitrary vertex then G2 has a factor
consisting of isolated edges and one triangle with the vertex v.

B.M.Stewart [16] has proved that for all n 6= 0 (mod 4) and n > 5 the complete
graph Kn is super-magic. It is easy to see that the classic concept of a magic square
corresponds to the fact that the complete bipartite graph Kn,n is super-magic for
all n 6= 2. J.Sedláček considered the graph M2n (also called the Möbius ladder)
and constructed a super-magic labeling for odd n > 3. Super-magic labeling for
some classes of regular graphs of degree 4 were described in [4] and [10]. (For more
information see [9].)

3. Magic hypergraphs

By a complete k-partite hypergraph Hk
n we mean a hypergraph with kn vertices

divided into k independent sets each with n vertices and nk hyperedges having
exactly k vertices. (Note. We obtain Hk

n from a complete k-partite graph Kn,n,...,n

by replacing all the edges of its every complete subgraph Kk by a hyperedge.) A
hypergraph Hk

n is magic if the hyperedges can be labeled with different positive
integers such that the sum of labels of the hyperedges incident to (k−1) particular
vertices is the same for all (k − 1)-tuples of vertices from (k − 1) independent sets.
Moreover, if the labels are consecutive integers 1, 2, . . . , nk then Hk

n is called super-
magic. In a similar way we can define a magic (or super-magic) hypergraph and its
special case a magic (or super-magic) graph.

Super-magic complete bipartite graphs Kn,n generalize to super-magic complete
k-partite hypergraphs Hk

n. In [18] it is proved the following theorem.

Theorem. (Trenkler)
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If n 6= 2, 6 and k ≥ 2 are positive integers, then the complete k-partite hyper-
graph Hk

n is super-magic.

From the correspondence between a supermagic complete k-partite hypergraph
and a magic p-dimensional cubes follows that this theorem was improved by [20].

4. Generalized magic graphs and perfect matchings

Let G = [V (G), E(G)] be a connected graph (without loops or multiple edges)
with n vertices denoted by v1, v2, . . . , vn and let β = (b1, b2, . . . , bn) be an n-
dimensional vector of positive real numbers. The graph G is called β-non-negative
or β-positive if there exists a non-negative solution f to the system of linear equa-
tions ∑

e∈E(G)

η(vi, e).f(e) = bi for i = 1, 2, . . . , n,

where η(vi, e) = 1 when the vertex vi and the edge e are incident or 0 otherwise.
In other terms, if there exist non-negative or positive edge labels such that the sum
of labels incident to vi is bi for all 1 ≤ i ≤ n.

A β-positive graph is called a generalized magic graphs if no two edges have the
same label. A characterization of generalized magic graphs was published in [14].
If we consider the vector β and the solution of non-negative integers our problem
coincides with the problem known as perfect b-matching (see the book [13,p.271]).
In the special case when β is a stationary vector of integer, the β-positive graphs
has been call a regularisable graph on Berge’s papers (see [13,p.218]), or a semimagic
graph in [11] and [14].

In [15] Ľubica Šándorová-Hudecová and M.Trenkler proved the following three
theorems. (Note. Tutte’s characterization of perfect 2-matching graphs [13,p.216]
is a particular case of the following theorem.)

Theorem.

Let G be a connected graph with n vertices v1, v2, . . . , vn and let β = (b1, b2, . . . , bn)
be a vector of non-negative numbers. The graph G is β-non-negative if and only if

∑

v1∈S

bi ≤
∑

vj∈Γ(S)

bj for all independent S 6= ∅ of G.

Theorem.

Let G be a non-bipartite connected graph with n vertices v1, v2, . . . , vn and let
β = (b1, b2, . . . , bn) be a vector of positive numbers. The graph G is β-positive if
and only if

∑

v1∈S

bi <
∑

vj∈Γ(S)

bj for all independent S 6= ∅ of G.

Theorem.

Let G be a bipartite graph with a partition V1, V2 having n vertices and let
β = (b1, b2, . . . , bn) be a vector of positive numbers. The graph G is β-positive if
and only if ∑

vi∈V1

bi =
∑

vj∈V2

bj
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and ∑

v1∈S

bi <
∑

vj∈Γ(S)

bj for all independent S 6= ∅, V1, V2.
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15. Ľ.Šándorová, M.Trenkler, On a generalization of perfect b-matching, Math. Bohemica 116

(1991), 380–384.
16. B.M.Stewart, Supermagic comlete graphs, Can. J.Math. 19 (1967), 427–438.
17. M.Trenkler, A construction of magic cubes, The Math. Gazette 84 (March 2000), 36–41.

18. M.Trenkler, Number of vertices and edges of magic graphs, Ars Combinatoria 55 (2000),
93–96.

19. M.Trenkler, Magic p-dimensional cubes of order n 6≡ 2 (mod 4), Acta Arithmetica 92 (2000),

189–194.
20. M.Trenkler, Magic p-dimensional cubes, Acta Arithmetica 96 (2001), 361–364.
21. M.Trenkler, Super-magic complete k-partite hypergraphs, Graphs and Comb. 17 (2001), 171–

175.
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E-mail address: trenkler@science.upjs.sk http://kosice.upjs.sk/~trenkler


